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Simple equations giving shapes of various convex
polyhedra: the regular polyhedra and polyhedra composed

of crystallographically low-index planes
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Simple equations are derived that give the shapes of various convex polyhedra.
The five regular polyhedra, called Platonic solids (the tetrahedron, hexahedron or
cube, octahedron, dodecahedron and icosahedron), and polyhedra composed of
crystallographically low-index planes are treated. The equations also give shapes
that are nearly polyhedral with round edges, or intermediate shapes between a
sphere and convex polyhedra, and which are observed as the shapes of small
particles or precipitates in materials.

1. Introduction

Small particles or precipitates in materials often show shapes similar to convex

polyhedra [1, 2]. Although the origins of the shapes of materials may be explained by

kinetics or energetics, in both cases the shape can be described by a simple equation

that is effective in understanding the origin of the shape in a physically sound

manner [2, 3]. In this letter we present such equations. Nearly polyhedral shapes with

round edges or intermediate shapes between a sphere and convex polyhedra are

observed for precipitates in alloys [1, 2]. The equations derived in the present study

give such shapes.
The present letter is an extension of a previous two-dimensional analysis [4] in

which an equation giving shapes between a circle and a regular N-sided polygon was

presented. As typical examples of convex polyhedra, we first consider the five regular

polyhedra called Platonic solids: the tetrahedron, hexahedron or cube, octahedron,

dodecahedron and icosahedron. Considering crystalline materials with cubic

structures, polyhedra composed of low-index planes, {100}, {110} and {111}, are

also treated.
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2. The regular polyhedra

2.1. The hexahedron

The regular polyhedra known as Platonic solids have been described in the literature

for over two thousand years. Their geometrical characteristics have been considered

from many viewpoints [5–7]. However, although the Platonic solids themselves are

well known, simple equations giving their shapes have not been derived in a unified

form. Figure 1 shows the shapes of the five regular polyhedra and the x–y–z

orthogonal coordinate system to describe their shapes. We first treat the case of

the hexahedron.
It is known that a solid figure described by

xj jpþ y
�� ��pþ zj jp¼ 1 ðp � 2Þ ð1Þ

describes a sphere when p¼ 2 and a hexahedron when p ! 1. This expression was

presented by the 19th century French mathematician Gabriel Lamé [8]. Intermediate

shapes between these two objects are called superspheres and can be represented by

choosing appropriate values of p>2. Figure 2 shows the shapes given by

equation (1) for (a) p¼ 2, (b) p¼ 4 and (c) p¼ 20, respectively. If xj j > y
�� �� and

xj j > zj j, xj jpþ y
�� ��pþ zj jp¼ 1 with p ! 1 means xj j ¼ 1. This is the reason why

equation (1) with p ! 1 gives a hexahedron surrounded by three sets of parallel

planes, x ¼ �1, y ¼ �1 and z ¼ �1.
When a2 þ b2 þ c2 ¼ 1, axþ byþ cz ¼ 1 is a plane having the vector a¼ (a, b, c)

as the unit normal vector. The orthogonal coordinate (a, b, c) on this plane is the

(a) (b) (c)

(d) (e)
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z

Figure 1. The five regular polyhedra known as Platonic solids: (a) tetrahedron;
(b) hexahedron; (c) octahedron; (d) dodecahedron; and (e) icosahedron. Inset: the coordinate
system used to describe the shapes of the Platonic solids.
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position of the foot of the perpendicular line from the origin. Using the function
f (a, b, c) given by

f ða, b, cÞ ¼ axþ byþ cz, ð2Þ

equation (1) is rewritten as

f 1, 0, 0ð Þ
�� ��p þ f 0, 1, 0ð Þ

�� ��p þ f 0, 0, 1ð Þ
�� ��p¼ 1: ð3Þ

In other words, when the faces of the hexahedron are written by the three sets of
parallel planes as

f 1, 0, 0ð Þ
�� �� ¼ 1, f 0, 1, 0ð Þ

�� �� ¼ 1 and f 0, 0, 1ð Þ
�� �� ¼ 1, ð4Þ

the shape of the hexahedron is written by equation (3) with p ! 1.
The relationship between the orthogonal coordinates (x, y, z) and the spherical

coordinates (r, �, ’) is

x ¼ r sin � cos ’, y ¼ r sin � sin’, z ¼ r cos �: ð5Þ

Using the spherical coordinates (r, �, ’) and defining the function g(a, b, c) as

g a, b, cð Þ ¼ a sin � cos ’ð Þ þ b sin � sin’ð Þ þ c cos �ð Þ, ð6Þ

the equation for the hexahedron is written as

rhex �, ’ð Þ ¼
1

G0ð1, 0, 0Þ½ �
1=p

, ð7Þ

where G0ð1, 0, 0Þ ¼ jgð1, 0, 0Þjp þ jgð0, 1, 0Þjp þ jgð0, 0, 1Þjp.
In the present letter, the equations giving other regular polyhedra will also be

expressed using the spherical coordinates (r, �,’).

2.2. The octahedron, dodecahedron and icosahedron

The octahedron, dodecahedron and icosahedron are also composed of sets of
parallel faces. Using the coordinate system shown in figure 1, we have the following
equations for planes showing the sets of parallel faces of the regular polyhedra.
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Figure 2. The shapes given by equation (1) or by equation (7) when equivalent to
equation (1) when (a) p¼ 2, (b) p¼ 4 and (c) p¼ 20. When p ! 1, the shape approaches that
of the hexahedron.
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The octahedron (four sets of parallel faces):

f ð�, �, �Þ
�� �� ¼ 1, f ð��, �, �Þ

�� �� ¼ 1, f ð�, � �, �Þ
�� �� ¼ 1,

f ð�, �, � �Þ
�� �� ¼ 1: � ¼ 1=

ffiffiffi
3

p� �
:

ð8Þ

The dodecahedron (six sets of parallel faces):

f ð�, ", 0Þ
�� �� ¼ 1, f ð�, �", 0Þ

�� �� ¼ 1, f ð0, �, "Þ
�� �� ¼ 1,

f ð0, �, �"Þ
�� �� ¼ 1, f ð", 0, �Þ

�� �� ¼ 1, f ð", 0, ��Þ
�� �� ¼ 1:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5�

ffiffiffi
5

p
Þ=10

q
, " ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ

ffiffiffi
5

p
Þ=10

q� � ð9Þ

The icosahedron (ten sets of parallel faces):

f ð�, �, �Þ
�� �� ¼ 1, f ð��, �, �Þ

�� �� ¼ 1,

f ð�, ��, �Þ
�� �� ¼ 1, f ð�, �, ��Þ

�� �� ¼ 1,
ð10Þ

and

f ð�, �, 0Þ
�� �� ¼ 1, f ð�, ��, 0Þ

�� �� ¼ 1, f ð0, �, �Þ
�� �� ¼ 1,

f ð0, �, ��Þ
�� �� ¼ 1, f ð�, 0, �Þ

�� �� ¼ 1, f ð�, 0, ��Þ
�� �� ¼ 1:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�

ffiffiffi
5

p
Þ=6

q
, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ

ffiffiffi
5

p
Þ=6

q� � ð11Þ

Equations (8) for the octahedron are identical to equations (10) for the icosahedron.

Although the values are different between (�, ") and (�, �), equations (9) for the

dodecahedron, it has the same form as that of equations (11) for the icosahedron.
As well as equation (7) obtained from equations (4) for the hexahedron, we have

the following equations from equations (8)–(11) giving the regular polyhedra.
The octahedron:

rocta ¼
1

GIð�, �, �Þ½ �
1=p

, ð12Þ

where

GIð�, �, �Þ ¼ gð�, �, �Þ
�� ��p þ gð��, �, �Þ

�� ��p þ gð�, ��, �Þ
�� ��p þ gð�, �, ��Þ

�� ��p:

The dodecahedron:

rdodeca ¼
1

GIIð�, ", 0Þ½ �
1=p

, ð13Þ

where

GIIð�, ", 0Þ ¼ gð�, ", 0Þ
�� ��p þ gð�, �", 0Þ

�� ��p þ gð0, �, "Þ
�� ��p

þ gð0, �, �"Þ
�� �� _pþ gð", 0, �Þ

�� ��pþ gð", 0, ��Þ
�� ��p:
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The icosahedron:

ricosa ¼
1

GIð�, �, �Þ þ GIIð�, �, 0Þ½ �
1=p

: ð14Þ

Figure 3 shows the shapes for p¼ 40 given by the equations for (a) the

octahedron, (b) the dodecahedron and (c) the icosahedron. The shapes given by

equations (12)–(14) also change from a sphere when p¼ 2 to each regular polyhedron

when p ! 1.

2.3. The tetrahedron

Different from other regular polyhedra, the tetrahedron does not have parallel faces.

The function h (a, b, c) given by

hða, b, cÞ ¼ gða, b, cÞ
�� ��� gða, b, cÞ
� �

=2 ð15Þ

satisfies h (a, b, c)¼ 0 when g (a, b, c)� 0, and h (a, b, c)¼�g (a, b, c)>0 when

g (a, b, c)<0. Using h (a, b, c) instead of g (a, b, c), we can describe the four non-

parallel faces that compose the tetrahedron. That is to say,

rtetra�1 ¼
1

Hð�, �, �Þ½ �
1=p

, ð16Þ

where

Hð�, �, �Þ ¼ hð�, �, �Þ
� �p

þ hð�, ��, ��Þ
� �p

þ hð��, �, ��Þ
� �p

þ hð��, ��, �Þ
� �p

is the equation giving the tetrahedron when p ! 1. However, the shape given by

equation (16) is not a sphere even if p¼ 2. We find that

Hð�, �, �Þ þ Hð��, ��, ��Þ ¼ GIð�, �, �Þ: ð17Þ

Moreover, when p ! 1 we find

Hð�, �, �Þ þ ð1=pÞðp�2ÞHð��, ��, ��Þ
	 
1=p

¼ Hð�, �, �Þ½ �
1=p: ð18Þ
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Figure 3. The nearly polyhedral shapes when p¼ 40 for (a) the octahedron, (b) the
dodecahedron and (c) the icosahedron.
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Hence the equation

rtetra�2 ¼
1

Hð�, �, �Þ þ ð1=pÞðp�2ÞHð��, ��, ��Þ
	 
1=p ð19Þ

gives a sphere when p¼ 2 and the tetrahedron when p ! 1. Figure 4
shows the shapes given by equation (1) when (a) p¼ 2, (b) p¼ 4 and (c) p¼ 16,
respectively.

3. Polyhedra composed of crystallogtaphically low-index planes

For materials with cubic structures, small particles or precipitates often show

polyhedral shapes composed of crystallographically low-index planes: {100}, {110}
and {111} [9, 10]. Considering the x, y and z axes of the x–y–z coordinate system as
the 100h i axes of the cubic crystal, equations (7) and (12) with p ! 1 are the
equations giving the hexahedron composed of {100} and the octahedron composed
of {111}, respectively. The equation giving the rhombic dodecahedron composed of
{110} is given by equation (13) by replacing the values (�, ", 0) with (�, �, 0) where
� ¼ 1=

ffiffiffi
2

p
.

The polyhedra shown in figures 5a, 5b and 5c are the hexahedron composed of
{100}, the octahedron composed of {111} and the rhombic dodecahedron composed

of {110}. These, respectively, are given by the following equations with p ! 1:

rhex ¼
1

G0ð1, 0, 0Þ½ �
1=p

, rocta ¼
1

ð
ffiffiffi
3

p
�ÞpGIð�, �, �Þ

	 
1=p ,

rr�dodeca ¼
1

ð
ffiffiffi
2

p
�ÞpGIIð�, �, 0Þ

	 
1=p ,

where �>0 and �>0 are the parameters giving the size of the octahedron and
the rhombic dodecahedron, respectively. Using the terms in the right-hand sides of
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Figure 4. The shapes given by equation (19) when (a) p¼ 2, (b) p¼ 4 and (c) p¼ 14. When
p ! 1, the shape approaches that of the tetrahedron.
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the above equations, the equation giving the shape of a polyhedron composed

of {100}, {110} and {111} is written as

r ¼
1

G0ð1, 0, 0Þ þ ð
ffiffiffi
3

p
�Þp GIð�, �, �Þ þ ð

ffiffiffi
2

p
�Þp GIIð�, �, 0Þ

	 
1=p : ð20Þ

The parameters � and � in the right-hand side of equation (20) change the shape

of the polyhedron composed of {100}, {110} and {111}. The shape given by

equation (20) for � ¼ 1=ð2
ffiffiffi
2

p
� 1Þ � 0:55 and � ¼ 1=

ffiffiffi
2

p
� 0:71 is shown in

figure 5d. This polyhedron has six square {100}, twelve square {110} and eight

equilateral-triangular {111}. To show the relationship between the polyhedra

shown in figures 5a to 5d, the common points, P and Q on the polyhedra are

also indicated.
Figure 6 is a map showing the variation of the shape of polyhedron given by

equation (20) with p ! 1. The shapes of the polyhedra in various regions are shown

by insets. The region for the hexahedron with {100} is that of �� 1/3 and �� 1/2, the

one for the rhombic dodecahedron with {110} is that of 1�� and 3�/2��, and

(a) (b)

(c) (d)

x

y

z

(0, 0, 1)

(0, 0, 1/α)

P

(0, 0, 1/β)

Q
PQ
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Figure 5. The shapes of (a) the hexahedron composed of {100}, (b) the octahedron composed
of {111}, (c) the rhombic dodecahedron composed of {110} and (d) the polyhedron composed
of {100}, {110} and {111} given by equation (20) with p ! 1, � ¼ 1=ð2

ffiffiffi
2

p
� 1Þ � 0:55 and

� ¼ 1=
ffiffiffi
2

p
� 0:71.
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the one for the octahedron with {111} is that of 1� � and ���. Other regions are for
the polyhedra composed of two or three kinds of the low-index planes. For example,
when �¼ 1/2, the shape changes from the hexahedron to the octahedron with
the increase of � from 1/3 to 1.

Coherent precipitates with misfit strains cause elastic deformation of material
containing the precipitates. The elastic strain energy caused by misfit strains depends
on the precipitate shape [2, 3, 11]. To calculate the shape dependence of the elastic
strain energy, an equation describing various shapes of polyhedral precipitates such
as equation (18) is a useful tool [2, 3]. Moreover, using certain values of p, we can
easily express the effects of round edges of the polyhedral precipitates [2, 3].
Application of the present results to such energy considerations will be the subject of
our future work.

References

[1] A. Maheshwari and A.J. Ardell, Phys. Rev. Lett. 70 2305 (1993).
[2] S. Onaka, N. Kobayashi, T. Fujii, et al., Mater. Sci. Engng A 347 42 (2002).
[3] S. Onaka, Phil. Mag. Lett. 81 265 (2001).
[4] S. Onaka, Phil. Mag. Lett. 85 359 (2005).
[5] P.R. Cromwell, Polyhedra (Cambridge University Press, Cambridge, 1997).

0.51/3 2/3 1.0

0.5

1.0

00

α

β

{100}-{111}

{100}-{110}

{100}

{100}-
{111}-
{110}

{110}-{111}

{111}

{110}

Figure 6. Map showing the variations of the shape of the {100}–{110}–{111} polyhedron
given by equation (20) with p ! 1.

182 S. Onaka



[6] A.D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005).
[7] G.M. Ziegler, Lectures on Polytopes (Springer, Berlin, 1995).
[8] A. Jaklic, A. Leonardis and F. Solina, Computational Imaging and Vision, Vol. 20 (Kluwer

Academic, Dordrecht, 2000), pp. 13–39.
[9] Y. Yazawa, T. Furuhara and T. Maki, Acta mater. 52 3727 (2004).
[10] R.S. Nelson, D.J. Mazey and R.S. Barnes, Phil. Mag. 11 91 (1965).
[11] S. Sato and W.C. Johnson, Metall. Trans. A 23 2761 (1992).

Simple equations giving shapes of various convex polyhedra 183


