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Simple equations giving shapes of various convex
polyhedra: the regular polyhedra and polyhedra composed
of crystallographically low-index planes
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Simple equations are derived that give the shapes of various convex polyhedra.
The five regular polyhedra, called Platonic solids (the tetrahedron, hexahedron or
cube, octahedron, dodecahedron and icosahedron), and polyhedra composed of
crystallographically low-index planes are treated. The equations also give shapes
that are nearly polyhedral with round edges, or intermediate shapes between a
sphere and convex polyhedra, and which are observed as the shapes of small
particles or precipitates in materials.

1. Introduction

Small particles or precipitates in materials often show shapes similar to convex
polyhedra [1, 2]. Although the origins of the shapes of materials may be explained by
kinetics or energetics, in both cases the shape can be described by a simple equation
that is effective in understanding the origin of the shape in a physically sound
manner [2, 3]. In this letter we present such equations. Nearly polyhedral shapes with
round edges or intermediate shapes between a sphere and convex polyhedra are
observed for precipitates in alloys [1, 2]. The equations derived in the present study
give such shapes.

The present letter is an extension of a previous two-dimensional analysis [4] in
which an equation giving shapes between a circle and a regular N-sided polygon was
presented. As typical examples of convex polyhedra, we first consider the five regular
polyhedra called Platonic solids: the tetrahedron, hexahedron or cube, octahedron,
dodecahedron and icosahedron. Considering crystalline materials with cubic
structures, polyhedra composed of low-index planes, {100}, {110} and {111}, are
also treated.
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2. The regular polyhedra

2.1. The hexahedron

The regular polyhedra known as Platonic solids have been described in the literature
for over two thousand years. Their geometrical characteristics have been considered
from many viewpoints [5-7]. However, although the Platonic solids themselves are
well known, simple equations giving their shapes have not been derived in a unified
form. Figure 1 shows the shapes of the five regular polyhedra and the x—y—z
orthogonal coordinate system to describe their shapes. We first treat the case of
the hexahedron.
It is known that a solid figure described by

X+ +HzlP=1 (p=2) (1)

describes a sphere when p =2 and a hexahedron when p — oco. This expression was
presented by the 19th century French mathematician Gabriel Lamé [8]. Intermediate
shapes between these two objects are called superspheres and can be represented by
choosing appropriate values of p > 2. Figure 2 shows the shapes given by
equation (1) for (a) p=2, (b) p=4 and (c) p=20, respectively. If |x| > [y| and
x| > |z|, |x|”+|y|p+|z|”=1 with p — co means |x| = 1. This is the reason why
equation (1) with p — oo gives a hexahedron surrounded by three sets of parallel
planes, x = £1, y = £1 and z = £1.

When a®> + b> 4+ ¢> = 1, ax + by + cz = 1 is a plane having the vector a = (a, b, ¢)
as the unit normal vector. The orthogonal coordinate (a, b, ¢) on this plane is the
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Figure 1. The five regular polyhedra known as Platonic solids: (a) tetrahedron;
(b) hexahedron; (¢) octahedron; (d) dodecahedron; and (e) icosahedron. Inset: the coordinate
system used to describe the shapes of the Platonic solids.
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Figure 2. The shapes given by equation (1) or by equation (7) when equivalent to
equation (1) when (a) p=2, (b) p=4 and (c) p=20. When p — oo, the shape approaches that
of the hexahedron.

position of the foot of the perpendicular line from the origin. Using the function
f(a,b,c) given by

f(a,b,c) =ax+ by + cz, 2)
equation (1) is rewritten as
| £(1,0,0)]" +]£(0,1,0)]" + | £(0,0, D[’ = 1. (3)

In other words, when the faces of the hexahedron are written by the three sets of
parallel planes as

]f(l,0,0)‘:l, |f(0,1,0)|:1 and ‘f(0,0,1)|:1, “4)

the shape of the hexahedron is written by equation (3) with p — oco.
The relationship between the orthogonal coordinates (x, y,z) and the spherical
coordinates (r, 6, ¢) is

x =rsinfcosg, y=rsinfsing, z=rcos6. ®)
Using the spherical coordinates (r, 0, ¢) and defining the function g(a, b, ¢) as
g(a, b, c) = a(sin O cos @) + b(sin Osin ¢) + c(cos H), (6)

the equation for the hexahedron is written as

Fhex(6, @) = ()

[Go(1,0,0)]'"”
where Go(1,0,0) = [g(1,0,0)” + |g(0, 1, 0)” + [g(0, 0, 1)I”.

In the present letter, the equations giving other regular polyhedra will also be
expressed using the spherical coordinates (r, 6, ¢).

2.2. The octahedron, dodecahedron and icosahedron

The octahedron, dodecahedron and icosahedron are also composed of sets of
parallel faces. Using the coordinate system shown in figure 1, we have the following
equations for planes showing the sets of parallel faces of the regular polyhedra.
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The octahedron (four sets of parallel faces):

‘f(y’ Vs V)‘ =1, ‘f(_y’ Vs V)‘ =1, ‘f(y’ - )’)‘ =1,

[y, =) =1 (y = 1/\/3'). ®)
The dodecahedron (six sets of parallel faces):
176,80 =1, [f6, —&,0) =1, |f(0,8,)]=1,
70,8, —&)| =1, [f(£,0,8) =1, |f(e,0, =8)| =1. o)
(5 =/(5-+5)/10, e =/(5+ ﬁ)/lo)
The icosahedron (ten sets of parallel faces):
oypl=1L |/rypl=1 (10)
/v, —v. =1 |fry, —|=1
and
lf@n0)| =1, [f& —n0|=1 |f0.5n|=1,
0.0 —ml =1, [f@.0.0] =1 [f0.0. 0| =1. .

(; — SO Ve =G+ ﬁ)/6)

Equations (8) for the octahedron are identical to equations (10) for the icosahedron.

Although the values are different between (8,¢) and (¢, n), equations (9) for the

dodecahedron, it has the same form as that of equations (11) for the icosahedron.
As well as equation (7) obtained from equations (4) for the hexahedron, we have

the following equations from equations (8)—(11) giving the regular polyhedra.

The octahedron:

1

Focta = ————1/,° (12)
[Gi(y. . '
where
_ p p P p
The dodecahedron:
1
I'dodeca = (13)

[Gu (8, e,0)]'/7”
where

Gn(s,e,0) = [g(8.8,0)|" +[g(8, —&,0)|" +1g(0,8, )|

+ [20,8, —&)|"+|g(e, 0,8)]"+|g(, 0, —o)|".
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Figure 3. The nearly polyhedral shapes when p=40 for (a) the octahedron, (b) the
dodecahedron and (c) the icosahedron.

The icosahedron:
1
[GI(V, Y, V) + Gll(;» n, 0)]1/P '

Figure 3 shows the shapes for p=40 given by the equations for (a) the
octahedron, (b) the dodecahedron and (c) the icosahedron. The shapes given by
equations (12)—(14) also change from a sphere when p =2 to each regular polyhedron
when p — oo.

(14)

Ficosa =

2.3. The tetrahedron

Different from other regular polyhedra, the tetrahedron does not have parallel faces.
The function /4 (a, b, ¢) given by

h(a, b, c) = {|g(a, b, c)| — g(a, b, c)}/2 (15)

satisfies /i (a,b,c)=0 when g(a,b,¢)>0, and h(a,b,c)=—g(a,b,c) >0 when
g(a,b,c) <0. Using h(a,b,c) instead of g(a,b,c), we can describe the four non-
parallel faces that compose the tetrahedron. That is to say,

1

- 16
[H(y,y, »)]'" (10

I'tetra—1 =

where

Hy.y.y) = {h(v.v.»)) +{hv. =v. =) +{i(—.v. =) +{h(=y, =v.»)}’

is the equation giving the tetrahedron when p — oco. However, the shape given by
equation (16) is not a sphere even if p=2. We find that

H(y,y,y) + H(—=y, —y, —y) = Gi(y, v, ). (17)

Moreover, when p — oo we find

[H(y.y.v) + (1/p)* 2 H(=y. —y. =)= [H(.y. v)]"". (18)



Figure 4. The shapes given by equation (19) when (a) p=2, (b) p=4 and (c) p=14. When
p — oo, the shape approaches that of the tetrahedron.

Hence the equation

]
[H(y.y.v)+ (1/p)?* 2 H(=y, —y. =]

gives a sphere when p=2 and the tetrahedron when p — oco. Figure 4
shows the shapes given by equation (1) when (a) p=2, (b) p=4 and (c) p=16,
respectively.

(19)

I'tetra—2 =

3. Polyhedra composed of crystallogtaphically low-index planes

For materials with cubic structures, small particles or precipitates often show
polyhedral shapes composed of crystallographically low-index planes: {100}, {110}
and {111} [9, 10]. Considering the x, y and z axes of the x—y—z coordinate system as
the (100) axes of the cubic crystal, equations (7) and (12) with p — oo are the
equations giving the hexahedron composed of {100} and the octahedron composed
of {111}, respectively. The equation giving the rhombic dodecahedron composed of
{110} is given by equation (13) by replacing the values (8, ¢,0) with (x, «,0) where
k=1/v2.

The polyhedra shown in figures 5a, 5Sb and 5Sc are the hexahedron composed of
{100}, the octahedron composed of {111} and the rhombic dodecahedron composed
of {110}. These, respectively, are given by the following equations with p — oo:

I ) I
N P octa — 1/p°
[Go(1,0,0)]'77 [(V3aY Giy, v, ]

T'hex =

1
[(V2BY Gu(k. k.00

where o > 0 and B > 0 are the parameters giving the size of the octahedron and
the rhombic dodecahedron, respectively. Using the terms in the right-hand sides of

I'r—dodeca =
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(a) ‘ (b) (0,0, 1/a)
y
© (0,0, 1/p) @
0,0,1)

Figure 5. The shapes of (a) the hexahedron composed of {100}, (b) the octahedron composed
of {111}, (c) the rhombic dodecahedron composed of {110} and (d) the polyhedron composed
of {100}, {110} and {111} given by equation (20) with p — oo, @ = 1/(2+/2 — 1) ~ 0.55 and
B=1/v2~0.71.

the above equations, the equation giving the shape of a polyhedron composed
of {100}, {110} and {111} is written as

1
[Go(1,0,0) + (V3 Gi(v. v, ) + (V2BY Guie. i, 0)] "

The parameters « and B in the right-hand side of equation (20) change the shape
of the polyhedron composed of {100}, {110} and {111}. The shape given by
equation (20) for a=1/2v/2—-1)~0.55 and B=1/+/2~0.71 is shown in
figure 5d. This polyhedron has six square {100}, twelve square {110} and eight
equilateral-triangular {111}. To show the relationship between the polyhedra
shown in figures 5a to 5d, the common points, P and Q on the polyhedra are
also indicated.

Figure 6 is a map showing the variation of the shape of polyhedron given by
equation (20) with p — oco. The shapes of the polyhedra in various regions are shown
by insets. The region for the hexahedron with {100} is that of « < 1/3 and g < 1/2, the
one for the rhombic dodecahedron with {110} is that of 1 <8 and 3«/2 <p, and

(20)

=
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Figure 6. Map showing the variations of the shape of the {100}—{110}—{111} polyhedron
given by equation (20) with p — oo.

the one for the octahedron with {111} is that of 1 <« and B < «. Other regions are for
the polyhedra composed of two or three kinds of the low-index planes. For example,
when B=1/2, the shape changes from the hexahedron to the octahedron with
the increase of « from 1/3 to 1.

Coherent precipitates with misfit strains cause elastic deformation of material
containing the precipitates. The elastic strain energy caused by misfit strains depends
on the precipitate shape [2, 3, 11]. To calculate the shape dependence of the elastic
strain energy, an equation describing various shapes of polyhedral precipitates such
as equation (18) is a useful tool [2, 3]. Moreover, using certain values of p, we can
easily express the effects of round edges of the polyhedral precipitates [2, 3].
Application of the present results to such energy considerations will be the subject of
our future work.
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